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Convergence of a Pl Coordination Protocol
in Networks with Switching Topology and Quantized Measurenents

Enric Xargay, Ronald Choe, Naira Hovakimyan, and Isaac iKami

Abstract— This paper analyzes the convergence properties of of leaders and thequality of service(QoS) of the network,
a distributed proportional-integral protocol for coordin ation of  which in the context of this work represents a measure of the
a network of agents with multiple leaders, dynamic informaton  |aye| of connectivity of the dynamic graph that captures the

flow, and quantized measurements. We show that the integral derlvi twork topol And d | th
term of the protocol allows the follower agents to ‘learn’ the ~ UNJErlying network topology. And second, we analyze the

reference rate, rather than have it available a priori, and dso ~ €Xistence of equilibria as well as the convergence progerti
provides disturbance rejection capabilities. of the collective dynamics under quantized feedback.
The paper is organized as follows. Sectibndescribes
the problem formulation. Sectidifi presents the PI protocol
Worldwide, there has been growing interest in the use @fdopted in this paper and analyzes its convergence pregerti
autonomous vehicles to execute complex missions witholri Section IV, we study the collective dynamics under
constant supervision of human operators. A key enablinguantization. Simulation results are presented in Sedfipn
element for the execution of such missions is the availgbili while SectionVI summarizes concluding remarks.
of advanced strategies for cooperative motion control of
autonomous vehicles. In [1], for example, the authors afdre Il. PROBLEM FORMULATION
the development of robust strategies for cooperative onissi ) .
in which a fleet of UAVs is required to follow collision-free ~ Consider a network of integrator-agents
paths and arrive at their respective final destinations @t th;(t) = w;(¢t)+d;, ©:(0) = xi0, i € I, :={1,...,n}, (1)
same time. The distributed protocol used for group c00rdj gynamic information flowgo(t) == (Vo, &(t))- In the
nation, which was first introduced in [2], has a proportienal 3,1\« formulationg; () € R is thecoordination statef the

integral (PI) §tructure.in yvhich each_ agent i§ only require h agent,u;(t) € R is its control input, andi; € R is an
to exchange its coordination state with its neighbors, aed t unknown constant disturbance.

constant reference rate is only available to a single leader The control objective is to design distributed protocol
The integral terr? in t’he consensus algorithm allows thﬁ1at solves the followingoordination problem
follower UAVs to ‘learn’ the reference rate from the leader.

I. INTRODUCTION

A generalization of this PI protocol was proposed in [3], zi(t) — z;(t) =0, Vi,j €Ly, (2a)
where the authors developed an adaptive algorithm to recon- @i(t) =X p, VieT,, (2b)

struct a time-varying reference velocity that is availadhy . )

to a single leader. The paper used a passivity framework %herep is the desired (constant) referc_ence rate.

show that a network of nonlinear agents with fixed connected 1N€ nétwork and the communications between agents

topology asymptotically achieves coordination. The worle@lisfy the following assumptions: _

in [4] also used a (discrete-time) Pl protocol to synchreniz . Assumption 1:The ith agent can only exchange informa-

networks of clocks with fixed connected information flow. Intion with a set of neighboring agents, denoted§(t).

this application, the integral part of the controller waiical ~_Assumption 2:Communications between two agents are

to eliminate the different initial clock offsets. bidirectional Go(¢t) is undirected) and the information is
This paper modifies the Pl protocol in [1], [2] to includetransmitted continuously with no delays. o

multiple leadersand analyzes the convergence properties of Assumption 3:The connectivity ot (t) at timet satisfies

the protocol for coordination of a network of agents withthe persistency of excitation (PE)-like condition

dynamic information flonand quantized measurementa 11 7T T

topic that has received increased attention in recent yj8ts f/ QnLo(1)Qpdr 2 pln—1, V120, (3)

[10]. On one hand, the use of multiple leaders in the i

protocol improves robustness to a single-point failure. O

the other hand, the use of finite-rate communication link

and/or coarse sensors motivates the interest in quantized: "

consensus problems. The main contribution of this paper R whose components are dll The parameter§’ >0

twofold. First, we present lower bounds on the convergen du e o, 1.] charactenze the QO.S of the communications

rate of the collective dynamics as a function of the numbdfetWork, which in the context of this paper represents a mea-

sure of the level of connectivity of the dynamic gra@i(t).

Research is supported by AFOSR, ARO, and ONR. Remark 1:Condition @) requires only the grap8(t) to
E. Xargay, R. Choe, and N. Hovakimyan are with UIUC, Urbara, | 6) d y 9 pﬁo( )

61801, e-mail:{xargay,choe19,nhovakip@illinois.edu. I. Kaminer is with be connected in an '”tegra| sense, not pOIHtWISe 'n time. In
NPS, Monterey, CA 93943, email: kaminer@nps.edu. fact, the graph may be disconnected during some interval of

hereLo(t) € R"*" is the piecewise-constant Laplacian of
e graptgy(t), and@,, is any(n — 1) x n matrix satisfying
1, =0 and Q,Q,) =1I,,_1, with 1,, being the vector



time or may even fail to be connected at all times. Similar The lemma below shows that the connectivity of the

type of conditions can be found in [11] and [12]. graphg(t) satisfies a PE-like condition similar t&)(
II1. DISTRIBUTED CONSENSUSPROTOCOL Lemma 1:Consider a network witm agents ancdu, vir-
A. Addition of Virtual Agents tual agents, added according to the description aboveelf th

connectivity of the original network satisfies Assumptign

Th_e consensus protocol adeted in this paper introduc%n the connectivity of the extended network verifies
ny virtual agents(1 < ny < n) in the network, associated

with n, agents. These virtual agents are implemented,in 11 /t+T T
distinct agents and have the following dynamics: NTJ QnLMQNdr 2 finIN-1, viz20,

di(t) = wi(t), 24i(0) = 240, i€, ={1,...,n,}, Where Qn is any (N—1)x N matrix such that
Qn1ln =0 andQnQJ = In—_1; While the constant,,
characterizes the QoS of the extended network. The para-
?ﬁaterune can be determined recursively from the relation

where the virtual control laws,;(t), ¢ € Z,, are yet to be
defined. Without loss of generality, we assume that the
virtual agents are implemented in agentso n,, that is,
the ith virtual agent is implemented in thgh agent. In pi =Fn+i—1p-1), i=1,...,n,
the context of this paper, these agents are referred to together with the initial conditiopo = 1, and
asleaders while the remaining agents afellowers 5

To limit the amount of infogrmgtion transmitted over the F(k,x,) = (mﬁz)_\/(s(mkﬁi) —Aen )
net_worlf, each Ieader_ is _onIy E?‘IIOWEd to exchange the stafqor The proof is omitted due to space limitations.
of its virtual agent with its neighbors; in other words, the . o
ith leader can only transmit the staig;(t), rather than  Remark 2:The concept ofirtual leaderis quite common
transmitting botha;(t) and z;(¢). Finally, we note that in the consensus literature, where it is understood as an
the agent and the virtual agent of a leader can exchangéditional agent running in open loop and providing an
information uninterruptedly, as these two agents do n@Xxternal consensus reference state to a subgroup of fol-
communicate over the network. Figut@resents an example lower agents; see [13]-[16] and references therein. In our

illustrating the addition of two virtual agents in a networkframework, thevirtual agents(or virtual leader§ play a
of three agents. different role in the network protocol and their dynamics

are affected by other agents (virtual and non-virtual).nfro
:"x a functional perspective, the virtual agents in our franmwo

fixed links ——— {1 |~ leader are equivalent to the “subgroup leaders” in the work rembrte
@ l\;‘ in [15]. The key reason for implementing these virtual agent
// \\ T 7 “‘\\ as part of our consensus protocol is to provide a set of agents
(o) \ :: \ with disturbance-free dynamicwhich —as will become clear
@ \‘l’"i""’ @ later— allow to effectively solve the coordination problé€h
eader — follower
(a) Original network. (b) Network with two virtual agents.

B. Proportional-Integral Protocol
Fig. 1. Addition ofn, = 2 virtual agents in a network of = 3 agents.

To solve the consensus probleR),(we adopt the protocol

The inclusion of these, virtual agents results in a nesx- ug; = kp Zje/\/m (zj — x0i) + p, i €L, (4)
tendled ngt(w)orl:f N d: n -+ nﬁ agents_with a lr;ew dyhnamic u; = kp ZjeM (xj — i) + Xis 1 €ZT,, (5
topologyg(t). According to the description above, this new . _ ; <~ o (0) = v e T 6
topology is characterized by the following neighboringsset i =k e, (w5 = i), xi(0) XZ_O’ _Z < " ( )_

wherekp > 0 and k; > 0 are coordination gains. This

Ni = {ti} i€y, protocol has a PI structure in which each agent is only
Ni(t) == (NP () \ o) U L;(t), i ¢ 1y, required to exchange its coordination statgt) with its
Nuslt) := (N2(8) \ Tp) U Li(t) U {i}, i€ T, neighbors, and the reference ratés only available to the

ny leaders. We also note that the virtual agents adjust their

where the vertex sef,(t) is defined as dynamics according to information exchanged with their

Li(t):={tj : jeN(t)NTy)}. neighboring agents.
The LaplacianL(t) of the new extended graph with vertex The protocol 4)-(6) can be rewritten in compact form as
setV :={/1,...,{ny,1,...,n} is given b pln
’ I:[(t)’: I;eT fg ’Loo(t;} 1]-:’,3 +gL,, e)I/RiNXN, Q,L(t) - _kPLg)w(t) " [X(t)e} ’ )
where P, is the (0, 1)-permutation matrix X(t) = —kiC L(h)=(t), ) x(0) = X0,
"o I, © wherew(t), (t), andx(t) are defined as
P, = [f{“ 8 . 0 } e RVXN . w(t) == [upr(t), ..., uen(t),ur(t), ..., u,(t)]" € RV,
n—ny

x(t) == [z (t),. .., Ten(t), 21(t), ..., 20 ()] € RV,
x(t) == [a(t),. .., xa(t)] " € R";
andCT :=[ 0 I, | e R™V,

while L,, is defined as
I,, —I,, O
L, := [—an I, 0} € RVXN,
(0] 0 0



C. Collective Dynamics and Convergence Analysis network, the maximum (guaranteed) rate of convergevice
is achieved by settingp = —-, which results in

Protocol {7) leads to theclosed-loop collective dynamics TN )
i(t) = ~kpL2(t) + [ Jta] . #(0) = 2o, o=t (T4 ke )
x(t) = —k;CTL(t)x(t), x(0) = xo0 , We also note that, a§’ goes to zero (graph connected
- n o . pointwise in time), the convergence rate can be set arlbjtrar
where d := [dy ... ’.dn] . R™ is the dlsturban(ze VECION. a5t by increasing the coordination gaiks and k;.
Note that the solutions (in the sense of Carathéodory [1753l
of the collective dynamics above exist and are unique, since IV. CONVERGENCE UNDERQUANTIZATION

the LaplacianL(t) is piecewise constant in In this section we analyze the stability and performance
To analyze the convergence properties of the algoritm ( characteristics of the distributed Pl protocol presented i

we reformulate the consensus probleti(ito a stabilization the previous section when the agents exchange quantized

problem. To this end, we define theojection matrixIIy as  measurements. For the sake of simplicity, in this paper we

My = In — % € RNXN | consider onlyuniform quantizeraith step sizeA.
and note that the following equalities hold: A. Protocol and CO_HEC“_VG Dyngmics _
B available, the PI protocol inroduced m(becomes
Moreover, we have ;;at theNspectrum of 'the matrix u=—kp (D(t)w — A(t) q(w)) + [pliﬂ ) ©)
L(t) == QnL(t)Qy € RWTDXTY X = —kCT (DWz — At)a@)) , x(0) = xo,

is equal to the spectrum of the extended Laplaclai)

. . . ) where q(z(t)) € ZN A is the quantized coordination state
without the eigenvalue\, = 0 corresponding to the eigen- a(@(t)) q

vector 1. Finally, we define theconsensus error state q(@(t) == [aa(@a(t)),. .-, aalza ()],
C(t) :=[¢/ (1),¢a (1) as with qa(-) : R — ZA being defined as
G(ft) = Qna(t) € RN, aa(§) =sen(©A [ +3] . cer.

Ca(t) = x(t) — plp+d  €R".

Note that, by definition¢s (£) = ¢a(t) = 0 is equivalent to The time-varying matrice® () a~nd A(t) are defined as

x(t) € span{ln} and(t) = ply. D(t) = D(t)+ De,  A(t):= A(t) + Dy,
~ With the above notation, the closed-loop collective dynamwhere D(t) and A(t) are respectively theegreeand adja-
ics can be reformulated as (see Appendix) cency matrice®f L(t), while D, is given by
“(t) = = 0 -I,, O
Ct) = Ac()C(t), C(O) Co (8) Dy — [Hw A } c RVXN
where A¢(t) € RINFTn—Ux(N+n=1) is given by o 0o o
Act) = —kpL(t) QnC Note that only the _infolrmat_ion exchanged over the network
A\ T | —keTQLEM) o : is subject to quantization; in fact, each agent has access to

Next we show that, if the connectivity of the gragh(¢) itS own unquantized state, and leaders also have access to
verifies the PE-like conditiors], then protocol ) solves the the unquantized state of its virtual agent (and viceversa).
consensus problen?), The next theorem proves this result. 1hen, noting thatl,(t) = D(t) — A(t), the collective dy-

. . . namics can be written as
Theorem 1:Consider the collective dynamic8)(and sup- ) ol -
pose thatGy (t) verifies the PE-like condition3] for some @ = —kpL(t)z + [X+§] +kpA(t)ez, =(0)==xo,
parametersy and 7. Then, for anykz > 2, there exist ' - Tox
coordination gaingp andk; such that the inequality X =—kiC L(t)x +kiC Alt)ex, x(0) = xo
ICO < acll¢0)]] e where e, (t) := q(x(t)) — (t) is the quantization error
vector In terms of the consensus error stafét), the

holds for some positive constaat € (0, c0), and with collective dynamics can be expressed as

N . kpNpn N\—1 .
Ae = e = trpppnry (L Rssy) ™ {(t) = Ac(t)C(t) + Be(t)ea(t),  €(0)=Co, (10)
Also, the coordination states and their rates of changsfgati where A, (¢) was introduced in§) and B¢ (t) is given by
limy o0 |24(t) — 2;()| =0, i,J € In, _ [kr@NA(®)
— . J B ' Bg(t) = [kICTA(t)} .
lims 00 () = p, 1€1,.

L . Note that, in this case, the right-hand side of the collectiv
Proof. The proof, which is omitted here due to spacgyynamics is discontinuous not only due to the time-varying
limitations, is similar to the proof of Lemma 3 in [1]. L0 qn610gy, but also due to the presence of quantized states.
Remark 3:Theorem1 above indicates that the QoS ofAs proven in [8], Carathéodory solutions might not exist
the network (characterized Wy and ) limits the achievable for quantized consensus problems, implying that a weaker
(guaranteed) rate of convergence of the closed-loop d¢ec concept of solution has to be considered. Similar to [8], we
dynamics. According to the theorem, for a given QoS of theiill consider solutionsn the sense of Krasovsk§7].



To show that Krasovsky solutions ta@) exist (at least) error state degrades gracefully with the value of the gaanti
locally, we note that, during continuous evolution of thestep size. The next theorem summarizes this result.

system between “quantization jumps’, the network dynam- Theorem 2:Consider the closed-loop collective dynam-
ics (10) are linear, with the quantized statgx(t)) acting s (10) and suppose that the topology(t) verifies the PE-
as a bounded exogenous input. This implies that the soljike condition @) for some parameteys andT'. Then, there

tionsx(t) are locally bounded (nfinite escape timeccurs).  exist coordination gaingp and k; ensuring that there is a
Then, local existence of Krasovsky solutions is guarantegghite time 7, > 0 such that the bounds

by the fact that the right-hand side df(j) is measurable and
locally bounded [17]. At this point, we cannot claim that |zi(t) — 23 ()] < ey,
Krasovsky solutions to1(0) are complete; for this, we will 12 (t) — pl < @A,
need to prove that solutions are bounded (see The@em ng|d for all t > 7, and some constants,, a,, € (0, cc).

B. (Krasovsky) Equilibria Proof. The proof is omitted due to space limitations. ]

Before investigating the convergence properties of the V. SIMULATION RESULTS

quantized collective dynamicsQ), in this section we an- e now present simulation results illustrating the theo-
alyze the existence of equilibria for these dynamics. Teetical findings of the paper. To this end, we consider a
simplify the analysis, we assume (only in this section) thatetwork of 5 agents with dynamic4)( At a given timet,

the network topology is static and connected. Under this aghe information flow is characterized by one of the graphs
sumption, one can easily show that the unquantized calectiin Figure2; note that all four graphs amot connected. The
dynamics ) have one isolated equilibrium point@ly = 0. control objective is to design a distributed Pl protocolttha
However, when quantized information is exchanged over thg)yes the consensus proble®) with p = 1 (in a practical
network,{eq = 0 is not an equilibrium point of the collective sense). In all of the simulations, the initial coordinatitate

dynamics anymore and other (undesirable) equilibria mighjectorz, and the disturbance vectdrare given by
exist, depending on the step size of the quantizers. - T

To show this, we first notice thaj(t) = 0 is equivalent
to &(t) € span{1n} andx(¢) = 0 holding simultaneously.  To solve the consensus problem, we add 2 virtual agents
Hence,{eq := [(leq: 2eq] | IS @n equilibrium of g) if to the network, and implement the (quantized) proto&l (

- - pln with Pl gainskp = 0.60 andk; = 0.15, and initial integrator
Y()1in €K (—kP (Dmeq(t) - AQ(meq(t))) + [xeqde » state xo = 0. Figure 3 presents the computed evolution
~ ~ of the closed-loop collective dynamics with quantizer ste
oek (_kICT (DweQ(t) B Aq(meq“»)) ’ sizeA = 0.3 (noteechat this stepiize verifies ingqualiMX). P
wherey(t) € R is an arbitrary signah;eq(t) is a continuous The figure shows the time evolution of the coordination
coordination-state trajectory satisfyinfjeq = QNTeq(t); States, their time-derivative, the integrator states, #rel
while Xeq := C2eq — pln + d. The second inclusion above 2-norms of the consensus error states¢) and {2(t).
and continuity ofr.q(t), along with the fact that the network Additionally, Figure4 shows an estimate of the QoS of both
is assumed to be static and connected, preclude the exastetite original network and the extended network, computed as

wo:[—1,2,4,—4,3] , d:[0,5,—3,4,1]

of equilibria involving time-varying coordination-statajec- Ay (11 gt T >
tories, i.e.y(t) = 0 (or equivalentlykeq(t) = 0). Then, the i) = Amin (" 7 Jir Q”LO(T)Q"dT) o =T
set of (Krasovsky) equilibria ofg) can be defined as fin, (1) := Amin (% % tt ; QNL(T)QLdT) ST,

N with 7" = 0.25 sec. The results demonstrate that the PI dis-
E =< (Teq, Xeq) € RY xR : : . ;
eqr Aeq tributed protocol allows the followers to ‘learn’ the redeice
rate commandp and reach agreement with the leaders,
0ck (

fkp(f)meqffiq(weq)w[ Plne }]) } (11) while effectively compensating for the (constant) distur-
Next, we show that, under sufficiently fine quantization, (3)
the setF is empty. © ‘
Lemma 2:Consider the quantized collective dynam- (2 ’e
ics (10), and assume the network topology is static and (4) @

Xeqt+d . .
3 bances present in the network. To illustrate the effect of
connected. If the step size of the quantizers satisfies

—k;CT (ﬁmequ q(meq))
A < n(2nnf1) ‘k_ij , (12) (a) Topology 1 (b) Topology 2

then the set of equilibridr is empty. (® (3)
Proof. The proof is omitted due to space limitations. ] 0‘ 0 “e
C. Convergence Analysis () sS (4) S

Next we show that, if the connectivity &f(¢) verifies the
PE-like condition 8), then protocol 9) solves the consensus
problem @) in a practical senseMoreover, the consensus Fig. 2. Network topologies.

(c) Topology 3 (d) Topology 4
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Fig. 3. Quantized closed-loop collective dynamics with fip@ntization A = 0.3). Fig. 4. Quality of serviceT = 0.25 sec).

the QoS on the convergence rate of the collective dynamidse corresponding (disturbance-free) virtual agentsclvhie
Figure5 presents convergence timgaormalized to the case notimplemented in this case. Figushows the evolution of
of 2 leaders and complete graph as network topology) astlae collective dynamics under the same information flow (see
function of the parameter (with 7" = 0.25 sec). The figure Figure4) and with quantizer step sizA = 0.3. As can be
shows that the speed of convergence decreases(witlhe seen, the agents do not reach agreement and the coordination
QoS of the network andii) the addition of virtual agents. states do not evolve at the desired reference gatel.
The latter can be explained by the reduction of the QoS of the The same network of 5 agents and information flow are
extended network as virtual agents are added (see Lelhmanow used to verify that the multi-leader Pl protocol (with
Notice that these results are consistent with Theotem virtual agents) is robust to the loss of a leader. In this case
we simulate the sudden loss of agent 2, which is one of
. 1 leader the leaders. Figuré@ presents the response of the collective
o :_2leaders dynamics, which shows that, despite the loss of one of the
leaders, the PI protocol is still able to solve the coordomat
problem @). We note that, for the agents to reach the desired
agreement, it is required that the resulting informatiomwflo
still satisfy a PE-like condition similar to3j.

Finally, the same scenario is used to illustrate the ex-

5

normalized convergence time

1 ;,:. . ' ~~, istence of undesirable attractors in the presence of coarse
’ guantization. For this purpose, we change the quantizpr ste
% 02 o2 o5  os 1 size to A = 3. The computed response of the closed-loop
iz collective dynamics is shown in Figui& In this case, the

Fig. 5. Convergence time of the collective dynamics (noizedlito the case agents do not reach the desired agreement and, in fact,
of 2 leaders and complete graph as network topolagy:m = 28.4 sec).  the solution converges to a neighborh?)cm‘ one of the
(Krasovsky) equilibrium points characterized kLY.

Next, we use the same simulation scenario to illustrate
the importance of adding virtual agents to the network. For VI. CONCLUSIONS
this purpose, we consider the network of 5 agents above and|n this paper we ana|yzed the convergence properties of
use protocol 4) to drive agents 1 and 2, while agents 3, 43 distributed PI protocol to coordinate a network of agents
and 5 are driven with protocob)-(6). The key difference subject to constant disturbances. We addressed the situati
with the simulation in Figure3 is thus that protocol4)  where each agent transmits only its coordination state i on
is applied directly to the (uncertain) agents, rather than t

2Notice that the results in Sectid%-B are derived for network topologies
1Convergence timés defined here as the time it takes for the 2-norm ofthat are both static and connected; instead, the simutagiwesented here
the consensus error stafét) to converge to a 2%-tube of its initial value. consider a time-varying information flow.



Fig. 6. Collective closed-loop dynamics witto
virtual agents(A = 0.3).
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a subset of the other agents, as determined by the netwq@rk] M. Arcak, “Passivity as a design tool for group coordion,” IEEE

topology. Furthermore, we considered the case where the
graph that captures the information flow is not connected,
during some interval of time or even fails to be connected at

all times. We also analyzed the convergence propertieseof tﬂ%

protocol when the agents exchange quantized measureme
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APPENDIX
CLOSED-LoOOPCOLLECTIVE DYNAMICS

From the definition of1 (¢) and{z(¢) and the coordination-state
dynamics, it follows that

er

Gi(t) = —kpQNL(t)z(t) + pQNIN + QN [¢aln ]

—kpQNL(t)x(t) + QnC{a(t).

The properties of the projection matrid s, along with the fact
that Qn QN = In_1, imply that

C1(t) = —kpQNTINL(H)IInz(t) + QNC a2 (t)

= —krQNQNQNL(H)QNQnNz(t) + QNCCa(t) (13)
—kpL(t)¢1(t) + QnCC2(1) -

Similarly, it follows that

Ca(t) = —kiCTL(z(t) = —k1CTQNL(H)G1 (1) (14)

Equations {3) and (14) lead to the dynamics3}.



